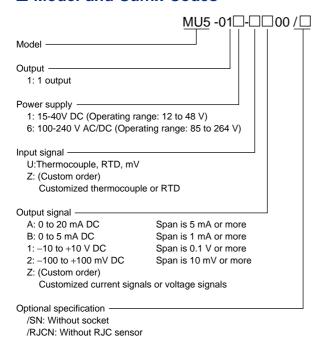
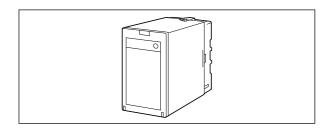
General Specifications

Model MU5
Universal Temperature Converter
(Free Range Type)

NTXUL


GS 77J04U05-01E


■ General

The MU5 is a plug-in type universal temperature converter that converts input signal (thermocouple, RTD or mV signal) into isolated DC current or DC voltage signals

- Selection of input type(thermocouple, RTD or mV signal), I/O range setting, burnout setting, output adjustment, I/O monitoring, and loop back test can be made using the optional Parameter Setting Tool (VJ77) or Handy Terminal (JHT200).
- The operation indicating lamp shows the operation status, abnormalities in a setting etc.
- Output adjustment, wiring resistance correction, and ON/OFF of RJC can be made using the switches on the front panel of the MU5 without a setting tool such as Handy Terminal.

■ Model and Suffix Codes

■ Ordering Information

Specify the following when ordering.

- Model and suffix codes: e.g. MU5-016-UA00
- Input type: e.g. Pt100 (ITS-90)
- Input range: e.g. 0 to 100°C
- Output range: e.g. 4 to 20 mA DC
- Burnout: e.g. Up

The universal temperature converter will be shipped with an input type of Pt100 (ITS-90) and an input range of 0 to 100°C if no specification of input type and input range.

■ Input/Output Specifications

Input signal:

Thermocouple: Type K, T, E, J, R, S, B, N (ITS-90: JIS'97), W3^(Note1), W5^(Note2)

(Note1)W97Re3-W75Re25

(Tungsten97% Rhenium 3% - Tungsten75% Rhenium25%)

The abbreviation of ASTM E988 Standard. (Note2) W95Re5-W74Re26

(Tungsten95% Rhenium 5% - Tungsten74% Rhenium 26%)

The abbreviation of ASTM E988 Standard.

RTD:

Pt100 (ITS-90: JIS'97), JPt100 (JIS'89) Pt50 (JIS'81), Pt100 (IPTS68: JIS'89) Pt100 (ITS-90): R_0 = 100 Ω , R_{100} / R_0 = 1.3851 JPt100 (JIS'89): R_0 = 100 Ω , R_{100} / R_0 = 1.3916 Pt100 (IPTS-68): R_0 = 100 Ω , R_{100} / R_0 = 1.3850 mV DC signal: –500 to +500 mV DC

Input type and measuring range:

Input type (thermocouple)	Measuring range (°C)
Type K	-270 to +1372
Type T	-270 to +400
Type E	-270 to +1000
Type J	-210 to +1200
Type R	-50 to +1768
Type S	-50 to +1768
Type B	0 to +1820
Type N	-270 to +1300
Type W3	0 to +2300
Type W5	0 to +2300
Input type (RTD)	Measuring range (°C)
Pt100 (ITS-90)	-200 to +850
Pt100 (IPTS-68)	-200 to +660
JPt100 (JIS'89)	-200 to +510
Pt50 (JIS'81)	-200 to +649
Input type (mV DC)	Measuring range (mV DC)
mV	-500 to +500

Measuring span: 3 mV or more (thermocouple, mV signal) , 10°C or more (RTD)

Input resistance: 1 M Ω during power on; 10 k Ω during power off (thermocouple, mV signal)

Input external resistance:

Thermocouple, mV signal: 500 Ω or less

However, this resistance value can be added to the BARD600 internal resistance when the converter is used with BARD600.

RTD: Input span (°C) \times 0.4 Ω or less / wire or 10 Ω , whichever is smaller.

However, this resistance value can be added to the BARD700 internal resistance when the converter is used with BARD700.

RTD detective current: Approx. 0.7 mA Maximum allowable input: ±4 V DC

Output signal: 1 point of DC current or DC voltage signal

Output signal setting range:

Output signal suffix code	Setting range
Α	0 to 20 mA DC Span is 5 mA or more
В	0 to 5 mA DC Span is 1 mA or more
1	±10 V DC Span is 0.1 V or more
2	±100 mV DC Span is 10 mV or more

Allowable load resistance:

Voltage output: $2 \text{ k}\Omega$ or more for $\pm 5 \text{ V DC}$ 10 k Ω or more for $\pm 10 \text{ V DC}$ 250 k Ω or more for $\pm 100 \text{ mV DC}$

Current output: 15 (V)/max. output (A) (Ω) or less

Adjustment range:

Input adjustment: ±1% of span or more (Zero/Span) Output adjustment: ±5% of span or more (Zero/ Span)

■ Standard Performance

Accuracy rating: ±0.1% of span

However, the accuracy is not guaranteed for output levels less than 0.5% of the span of a 0 to X mA output range type.

The accuracy is limited according to the input/output range settings.

For thermocouple, add the accuracy of RJC to the calculated accuracy.

Accuracy Calculation

Accuracy = Input accuracy + Output accuracy (%) [Input accuracy]

<Thermocouple>

• ±0.1% of span or ±1°C, whichever is greater when the following range is included.

Type K, E and T: Less than -200°C

Type B: 400°C to less than 600°C

Type E and J: More than 750°C

Type N: More than 1200°C

• ±0.1% of span or ±2°C, whichever is greater when the following range is included.

Type N: Less than -200°C

- Accuracy is not guaranteed for less than 400°C of Type B.
- When the measuring range is ±20 mV in thermoelectromotive force, substitute 10 for Tm of the following expression. When ±100 mV, substitute 40. An obtained value is applied as an input accuracy.

Tm/measuring span (mV) \times input accuracy* *: Any of $\pm 0.1\%$, $\pm 1^{\circ}$ C or $\pm 2^{\circ}$ C.

- Type K, E, T and N: For the measured temperatures less than -200°C, add the following coefficient (Te) to the input accuracy mentioned above. An obtained value is the input accuracy.
 Te [°C]=(-200 [°C] measured temp. [°C]) / X (X=10 for Type K, T, and E; X=5 for Type N)
- Accuracy of reference junction compensation (RJC):

Other than Type R and S: $\pm 1^{\circ}$ C (0 to 50°C) Type R and S: $\pm 2^{\circ}$ C (0 to 50°C)

Type K, E, T and N: For the measured temperatures less than –200°C, multiply the input accuracy mentioned above by K, where

K=(Thermocouple output change/°C near 0°C)/ (Thermocouple output change/°C at measured temperature)

<RTD>

 $\pm 0.05\%$ of span or $\pm 0.05^{\circ}C$, whichever is greater. For Pt50 (JIS'81), $\pm 0.1\%$ of span or $\pm 0.1^{\circ}C$, whichever is greater.

<mV signal>

Compare the specified input range with the input range in the table below (narrower range) and choose accuracy calculation conditions. However, $\pm 0.05\%$ is applied if an input accuracy obtained from the expression is less than $\pm 0.05\%$. Input accuracy = $\pm 0.05\% \times a/b$

Innut rongo	Accuracy calculation condition	
Input range	а	b
±20 mV DC	10(mV)	Input span
±100 mV DC	40(mV)	
Outside of ±100 mV DC	200(mV)	
and within ±500 mV DC		

[Output accuracy]

Compare the specified output range with the output range in the table below (narrower range) and choose accuracy calculation conditions. However, $\pm 0.05\%$ is applied if an output accuracy obtained from the expression is less than $\pm 0.05\%$. Output accuracy = $\pm 0.05\% \times a/b$

Outpu	ıt signal suffix code	Accuracy calculation condition	
	Output range	а	b
Α	0 to 20 mA DC	10(mA)	
В	0 to 5 mA DC	2.5(mA)	
	±2.5 V DC	1(V)	Output span
1	Outside of ±2.5 V DC	4(V)	
	and within ±10 V DC		
	±25 mV DC	10(mV)	
2	Outside of ±25 mV DC	40(mV)	
	and within ±100 mV DC	40(1117)	

Burnout: Up, Down or Off; the maximum burnout time is specified as 60 seconds.

Response speed: 150 ms, 63% response (10 to 90%) Effect of power supply voltage fluctuations:

 $\pm 0.1\%$ of span or less for the fluctuation within the operating range of each power supply voltage specification.

Effect of ambient temperature change:

 $\pm 0.15\%$ of span or less for a temperature change of 10°C.

Effect of leadwire resistance change:

Thermocouple: $\pm 15~\mu V$ or less for a change of 100 Ω RTD: $\pm 0.2^{\circ}C$ or less for a change of 10 Ω/W ire.

■ Power Supply and Isolation

Power supply rated voltage:

15-40 V DC ... or

Power supply input voltage:

15-40 V DC ... (±20%) or

100-240 V AC/DC ≈ (-15, +20%) 50/60 Hz

Power consumption:

24 V DC 1.7 W, 110 V DC 1.6 W 100 V AC 3.5 VA, 200 V AC 4.9 VA

Insulation resistance:

100 $M\Omega$ at 500 V DC between input, output, power supply, and grounding terminals mutually.

Withstand voltage:

2000 V AC for 1 minute between input, output, power supply and grounding terminals mutually.

■ Environmental Conditions

Operating temperature range: 0 to 50°C

Operating humidity range: 5 to 90% RH (no condensation)

Operating conditions: Avoid installation in such environments as corrosive gas like sulfide hydrogen, dust, sea breeze and direct sunlight.

Installation altitude: 2000 m or less above sea level.

■ Mounting and Dimensions

Construction: Plug-in type

Material: Main unit : ABS resin (black), UL94 V-0

ABS resin + polycarbonate resin (black),

UL94 V-0

PBT resin, including glass fiber (black),

UL94 V-0

Socket: Modified polyphenylene oxide resin,

including glass fiber (black), UL94 V-1

Mounting: Wall or DIN rail mounting Connection: M3.5 screw terminals

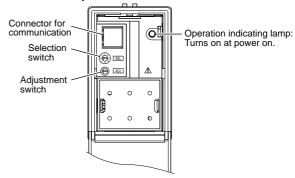
External dimensions: 86.5 (H)×51 (W)×123 (D) mm

(including a socket)
Main unit: approx. 200 g

Socket: approx. 60 g

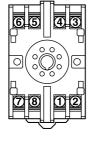
Accessories

Weight:

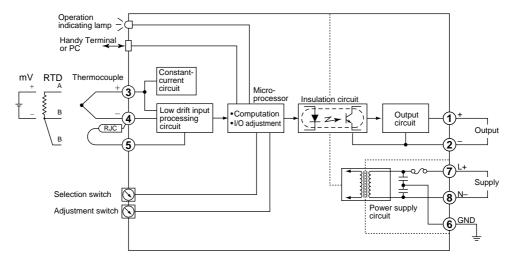

Spacer: One (for DIN rail mounting)

Range label: One

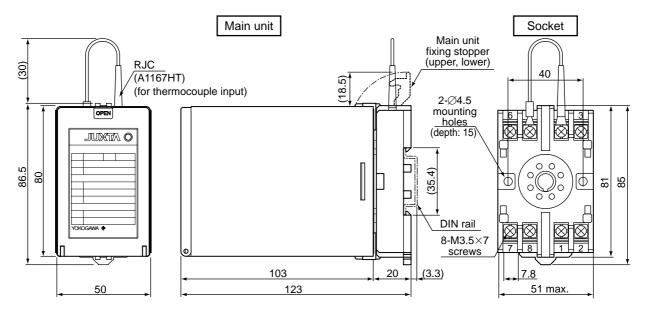
RJC sensor: One (except for "/RJCN")


■ Front Panel

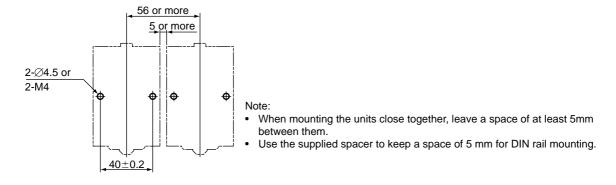
Output adjustment, wiring resistance correction, and ON/OFF of RJC can be made using the selection switch and adjustment switch.


Position of selection switch	Item to be adjusted	
0	No function	
1	Output zero adjustment	
2	Output span adjustment	
6	Wiring resistance correction	
7	ON/OFF of RJC	

■ Terminal Assignments


Terminal No.	Signal name	Thermocouple	RTD	mV signal
1	OUTPUT	(+)		
2	OUTPUT	(-)		
3	INPUT	(+)	(A)	(+)
4	INPUT	(-) RJC	(B)	(-)
5	INPUT	RJC reverse side—	(B)	N.C
6	GND	(GND)		
7	SUPPLY	(L+)		
8	SLIDDI V	(N_)		

■ Block Diagrams



■ External Dimensions

Unit: mm

<Mounting Dimensions>

• The information covered in this document is subject to change without notice for reasons of improvements in quality and/or performance.